Multiple Bank Mergers and Rational Foresight

Ethan Cohen-Cole and Nick Kraninger of Boston

Federal Reserve Bank

November 30, 2007

Motivation Summary of Findings

Merger patterns depend on long-run plans

- Merger patterns depend on long-run plans
 - Anticipation of the future shapes the present

- Merger patterns depend on long-run plans
 - Anticipation of the future shapes the present
- Alternate explanations may be less important than previously thought

- Merger patterns depend on long-run plans
 - Anticipation of the future shapes the present
- Alternate explanations may be less important than previously thought
 - Long-run strategy accounts for much of the same variation

Background

- Background
- Methods

- Background
- Methods
- Results

- Background
- Methods
- Results
- Conclusion

 In 1975 there were 14,000 banks in the US; by 2006 there are fewer than 7,000.

- In 1975 there were 14,000 banks in the US; by 2006 there are fewer than 7,000.
 - Occured mostly due to mergers (more so than failures)

- In 1975 there were 14,000 banks in the US; by 2006 there are fewer than 7,000.
 - Occured mostly due to mergers (more so than failures)
 - Firms often merge multiple times; often with explicit (public or private) plans to do so

- In 1975 there were 14,000 banks in the US; by 2006 there are fewer than 7,000.
 - Occured mostly due to mergers (more so than failures)
 - Firms often merge multiple times; often with explicit (public or private) plans to do so
- Paper implies differences in behavior under circumstances of multiple matching

 In general, methods are based on non-structured regression models based on single mergers

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)

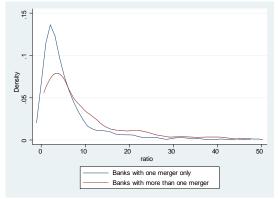
- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:
 - Market returns are declining in merger number,

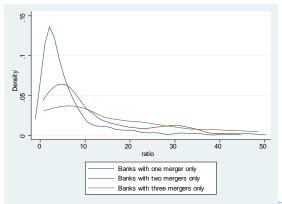
- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:
 - Market returns are declining in merger number,
 - although far from clear why this is (foresight not discussed)

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:
 - Market returns are declining in merger number,
 - although far from clear why this is (foresight not discussed)
- Eat or be eaten (Gorton et al 2007)

- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:
 - Market returns are declining in merger number,
 - although far from clear why this is (foresight not discussed)
- Eat or be eaten (Gorton et al 2007)
 - Adds some elements of foresight



- In general, methods are based on non-structured regression models based on single mergers
 - These require assumption of error exchangeability
 - Some recent works have improved on this:
- Multiple mergers (Rosen 2004)
 - Focus on executive compensation, but does note that:
 - Market returns are declining in merger number,
 - although far from clear why this is (foresight not discussed)
- Eat or be eaten (Gorton et al 2007)
 - Adds some elements of foresight
 - Optimal merger strategy depends on your relative size in industry


Empirics of merger distributions

 Distribution of first merger ratio of banks that merge once / more than once

Empirics of merger distributions

 Distribution of final merger ratio of banks that merge once / twice / three times

 Fundamental difference between a one-shot decision and a sequence of them

- Fundamental difference between a one-shot decision and a sequence of them
 - Why then do existing matching models not allow for this?

- Fundamental difference between a one-shot decision and a sequence of them
 - Why then do existing matching models not allow for this?
- Suggests a need for a model that links the merger decisions

- Fundamental difference between a one-shot decision and a sequence of them
 - Why then do existing matching models not allow for this?
- Suggests a need for a model that links the merger decisions
- Essentially, need a matching model with foresight.

What the Paper Does

 Uses a multi-stage search and matching model (from Cohen-Cole 2006)

What the Paper Does

- Uses a multi-stage search and matching model (from Cohen-Cole 2006)
- Allows for agent farsightedness ability to incorporate incentives of future joint entities

What the Paper Does

- Uses a multi-stage search and matching model (from Cohen-Cole 2006)
- Allows for agent farsightedness ability to incorporate incentives of future joint entities
- Examines merger dynamics in the banking industry since 1986

Set-Up 1

• Consider three types of agents (x_a, x_b, y) .

Set-Up 1

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x

Set-Up 1

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x
 - Matches form when x, y merge

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x
 - ullet Matches form when x, y merge
- Second stage decision problem is simple

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x
 - Matches form when x, y merge
- Second stage decision problem is simple
- First stage problem requires agents x_a, x_b to consider the options of x

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x
 - Matches form when x, y merge
- Second stage decision problem is simple
- First stage problem requires agents x_a, x_b to consider the options of x
 - Essentially valuing the matching potential of x

- Consider three types of agents (x_a, x_b, y) .
 - Matches form when x_a, x_b merge: form x
 - Matches form when x, y merge
- Second stage decision problem is simple
- First stage problem requires agents x_a, x_b to consider the options of x
 - Essentially valuing the matching potential of x
 - This is a function of both the partner x_a or x_b and the possible partners y in the next round.

• Agents maximize expected payout, discounted at r.

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x:

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x:
 - set A(x) of agents with whom x is willing to match.

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x :
 - set A(x) of agents with whom x is willing to match.
- In a steady-state Search Equilibrium (SE),

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x:
 - set A(x) of agents with whom x is willing to match.
- In a steady-state Search Equilibrium (SE),
 - Everyone maximizes expected payoff, taking all other strategies as given,

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x:
 - set A(x) of agents with whom x is willing to match.
- In a steady-state Search Equilibrium (SE),
 - Everyone maximizes expected payoff, taking all other strategies as given,
 - All unmatched rates are in steady state.

- Agents maximize expected payout, discounted at r.
- Match output f(x, y), and $g(x_a, x_b)$ is shared.
 - x's share of output is shared between types x_a , x_b in proportion to their initial match distribution. (EQUITY stakes)
- Pure strategy for type x:
 - set A(x) of agents with whom x is willing to match.
- In a steady-state Search Equilibrium (SE),
 - Everyone maximizes expected payoff, taking all other strategies as given,
 - All unmatched rates are in steady state.
- Paper proves existence of SE for the modeled two-stage game

• One-stage match: V(z) - unmatched value for z.

$$S\left(x|y\right) = \frac{surplus2 - rV(y) - rV\left(x_{a}\right)}{2\left(r + \delta\right)}$$

ullet One-stage match: $V\left(z
ight)$ - unmatched value for z.

$$S(x|y) = \frac{surplus2 - rV(y) - rV(x_a)}{2(r+\delta)}$$

Two-stage match:

$$S(x|y) = \frac{surplus2 - rW(y) - rV(x_a)}{2(r+\delta)} - \frac{r}{2(r+\delta)} \left[\frac{surplus1 - rV(x_a) - rV(x_b) + k}{2(r+u(x)\delta)} \right]$$

• One-stage match: V(z) - unmatched value for z.

$$S\left(x|y\right) = \frac{surplus2 - rV(y) - rV\left(x_{a}\right)}{2\left(r + \delta\right)}$$

Two-stage match:

$$S(x|y) = \frac{surplus2 - rW(y) - rV(x_a)}{2(r+\delta)} - \frac{r}{2(r+\delta)} \left[\frac{surplus1 - rV(x_a) - rV(x_b) + k}{2(r+u(x)\delta)} \right]$$

Note:

ullet One-stage match: $V\left(z
ight)$ - unmatched value for z.

$$S(x|y) = \frac{surplus2 - rV(y) - rV(x_a)}{2(r+\delta)}$$

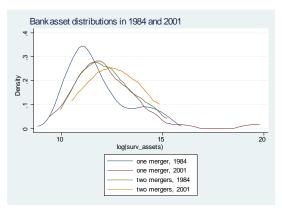
Two-stage match:

$$S(x|y) = \frac{surplus2 - rW(y) - rV(x_a)}{2(r+\delta)} - \frac{r}{2(r+\delta)} \left[\frac{surplus1 - rV(x_a) - rV(x_b) + k}{2(r+u(x)\delta)} \right]$$

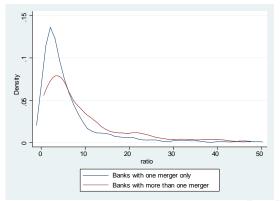
- Note:
 - Second stage payoff is stage two payoff minus a share of stage one due to other agent.

• Model has implications for patterns that should be observed

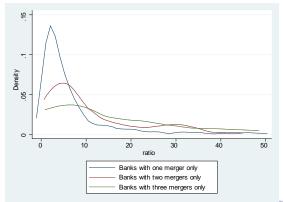
- Model has implications for patterns that should be observed
- Predicts a decrease in assortative matching


- Model has implications for patterns that should be observed
- Predicts a decrease in assortative matching
 - If horizon is for multiple matches, expectation is for increasingly lopsided mergers

- Model has implications for patterns that should be observed
- Predicts a decrease in assortative matching
 - If horizon is for multiple matches, expectation is for increasingly lopsided mergers
 - i.e. mergers should show increasing relative size


- Model has implications for patterns that should be observed
- Predicts a decrease in assortative matching
 - If horizon is for multiple matches, expectation is for increasingly lopsided mergers
 - i.e. mergers should show increasing relative size
- Charts again:

Empirics, Again


• Comparison of bank asset distributions 1984/2002.

 (Distribution of first merger ratio of banks that merge once / more than once)

 (Distribution of final merger ratio of banks that merge once / twice / three times)

• Two sets of results:

- Two sets of results:
 - Ex-post, a completed merger should be related to the subsequent one

- Two sets of results:
 - Ex-post, a completed merger should be related to the subsequent one
 - Ex-ante, the expectations of second-period actions should impact the choice of the first merger

- Two sets of results:
 - Ex-post, a completed merger should be related to the subsequent one
 - Ex-ante, the expectations of second-period actions should impact the choice of the first merger
- We will look to identify 'regimes'; that is, we look to find an endogenous relationship;

- Two sets of results:
 - Ex-post, a completed merger should be related to the subsequent one
 - Ex-ante, the expectations of second-period actions should impact the choice of the first merger
- We will look to identify 'regimes'; that is, we look to find an endogenous relationship;
 - A model with exchangeability should find no relationship between first and second period mergers

• Conjecture 1: role of future mergers on current decisions

- Conjecture 1: role of future mergers on current decisions
 - The asset ratio of the 2nd merger should be a positive predictor of the asset ratio of the current merger.

- Conjecture 1: role of future mergers on current decisions
 - The asset ratio of the 2nd merger should be a positive predictor of the asset ratio of the current merger.
 - The asset ratio of the 3nd merger should be a positive predictor of the asset ratio of the current merger.

- Conjecture 1: role of future mergers on current decisions
 - The asset ratio of the 2nd merger should be a positive predictor of the asset ratio of the current merger.
 - The asset ratio of the 3nd merger should be a positive predictor of the asset ratio of the current merger.
- Conjecture 2: the pattern of future mergers conditional on the current one

- Conjecture 1: role of future mergers on current decisions
 - The asset ratio of the 2nd merger should be a positive predictor of the asset ratio of the current merger.
 - The asset ratio of the 3nd merger should be a positive predictor of the asset ratio of the current merger.
- Conjecture 2: the pattern of future mergers conditional on the current one
 - The asset ratio of the current merger should be a positive predictor of the asset ratio of the subsequent merger.

- Conjecture 1: role of future mergers on current decisions
 - The asset ratio of the 2nd merger should be a positive predictor of the asset ratio of the current merger.
 - The asset ratio of the 3nd merger should be a positive predictor of the asset ratio of the current merger.
- Conjecture 2: the pattern of future mergers conditional on the current one
 - The asset ratio of the current merger should be a positive predictor of the asset ratio of the subsequent merger.
 - The asset ratio of the current merger should be a positive predictor of the asset ratio of the 3rd merger.

ullet define $\mathit{ratio}_{kt} = \mathit{asset}_{\mathit{it}} / \mathit{asset}_{\mathit{jt}}$

- ullet define $ratio_{kt} = asset_{it} / asset_{jt}$
- define ratio_k as the asset ratio for the k'th merger in a series
 of mergers for bank i.

- define $ratio_{kt} = asset_{it} / asset_{jt}$
- define ratio_k as the asset ratio for the k'th merger in a series
 of mergers for bank i.
- Conjecture 1:

$$ratio_{1it} = \alpha + \beta_1 E_t ratio_{2it'} + \beta_2 E_t ratio_{3it''} + \varepsilon_i$$
 (1)

$$ratio_{2it'} = \alpha + \beta_4 E_t ratio_{3it''} + \eta_i$$
 (2)

- define $ratio_{kt} = asset_{it} / asset_{jt}$
- define ratio_k as the asset ratio for the k'th merger in a series
 of mergers for bank i.
- Conjecture 1:

$$ratio_{1it} = \alpha + \beta_1 E_t ratio_{2it'} + \beta_2 E_t ratio_{3it''} + \varepsilon_i$$
 (1)

$$ratio_{2it'} = \alpha + \beta_4 E_t ratio_{3it''} + \eta_i$$
 (2)

• Theory predicts β_2 , $\beta_1 > 0$.

• Conjecture 2:

$$Eratio_{3it''} = \alpha + \gamma_1 ratio_{1i} + \gamma_2 ratio_{2i} + \xi_i$$
 (3)

$$Eratio_{2it'} = \alpha + \gamma_4 ratio_{1i} + \mu_i$$
 (4)

• Conjecture 2:

$$Eratio_{3it''} = \alpha + \gamma_1 ratio_{1i} + \gamma_2 ratio_{2i} + \xi_i$$
 (3)

$$Eratio_{2it'} = \alpha + \gamma_4 ratio_{1i} + \mu_i$$
 (4)

• Theory predicts that γ_1 , $\gamma_2 > 0$.

Data

• Information on merger activity between 1986 and 2007

Data

- Information on merger activity between 1986 and 2007
- Sample of 3304 merger events involving 4648 US banks

Data

- Information on merger activity between 1986 and 2007
- Sample of 3304 merger events involving 4648 US banks
- Use asset size as key measure (ratio of asset size of acquiring bank to acquired)

Results1: Current Merger Ratio on Future Ratio

ratio	1st merger		2nd merger	merger 1/2	merger 1/3		merger 2/3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2nd ratio	.419	.391		.230	.399	.326	
	(.059)***	(.079)***		(.118)*	(.135)***	(.152)**	
3rd ratio		.130	.418			.255	.379
		(.081)	(.084)***			(.105)**	(.188)**
cons	6.228	6.492	11.643	5.466	6.298	3.534	9.826
	(.775)***	(1.378)***	(1.595)***	(1.037)***	(1.965)***	(1.774)**	(2.775)***

[•] merger x/y: merger number x for institutions with y mergers.

Results2: Current Merger Ratio on Prior Ratio

ratio	3rd merger		2nd merger	merger 2/2	merger 3/3		merger 2/3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2nd ratio	.357	.282			.267	.119	
	(.064)***	(.085)***			(.123)**	(.141)	
1st ratio		.169 (.109)	.606 (.069)***	.454 (.159)***		.374 (.200)*	.620 (.198)***
cons	12.359 (1.397)***	11.005 (1.444)***	7.871 (.884)***	6.925 (1.378)***	11.374 (2.284)***	8.932 (2.323)***	7.665 (2.098)***

[•] merger x/y: merger number x for institutions with y mergers.

Instruments Standard

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics
 - Unexpected changes (deviations from industry expectations) cannot be correlated with present choices

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics
 - Unexpected changes (deviations from industry expectations) cannot be correlated with present choices
 - Future choices may be correlated with merger decisions at that time

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics
 - Unexpected changes (deviations from industry expectations) cannot be correlated with present choices
 - Future choices may be correlated with merger decisions at that time
- Four instruments

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics
 - Unexpected changes (deviations from industry expectations) cannot be correlated with present choices
 - Future choices may be correlated with merger decisions at that time
- Four instruments
 - · Deviation from expected of first four moments of asset distribution

- Instruments Standard
 - Consider predicting current merger ratios based on future actions:
 - Need an instrument that is correlated with future actions but uncorrelated with current ones
- Instrument Choice
 - Firms at time of current merger chose path of action
 - Choices are based on current industry circumstances and expectations of future industry characteristics
 - Unexpected changes (deviations from industry expectations) cannot be correlated with present choices
 - Future choices may be correlated with merger decisions at that time
- Four instruments
 - Deviation from expected of first four moments of asset distribution
 - e.g. Predict mean using ARMA process, residual is valid instrument

Results - 1st stage

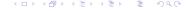
ratio					
	(1)	(2)	(3)	(4)	
mean-resid	-7.02e-06	5.51e-06	-2.50e-06	-2.23e-06	
	(1.00e-05)	(.00002)	(.00002)	(.00002)	
var-resid		-1.71e-14	-9.05e-15	-9.06e-15	
		(2.16e-14)	(2.37e-14)	(2.37e-14)	
skew-resid			416	568	
			(.536)	(1.695)	
kurt-resid				.002	
				(.023)	

Results - 2nd stage

ratio	all mergers	1st merger	2nd merger	3rd merger
	(1)	(2)	(3)	(4)
next merger ratio	1.470	.844	.881	.281
	(.512)***	(.247)***	(.222)***	(.273)

Results1: Current Merger Ratio on Future Ratio

	1st merger		2nd merger merger 1/2		merge	merger 1/3	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2nd ratio	.460 (.090)***	.405 (.114)***		.177 (.105)*	.469 (.389)	.469 (.396)	
3rd ratio		.161 (.094)*	.426 (.133)***			.176 (.230)	.477 (.176)***
surv-ka	-42.997	-83.860	107.679	-15.885	-50.919	-70.834	105.426
	(21.442)**	(50.425)*	(86.216)	(19.447)	(89.118)	(86.784)	(175.626)
surv-roa	-149.979	-555.545	-64.830	-91.866	-865.251	-1608.147	2577.924
	(262.996)	(882.582)	(1476.398)	(192.249)	(2694.466)	(2315.166)	(3000.590)
surv-ineff	187	848	.629	094	-2.444	-1.592	1.196
	(.121)	(.589)	(.487)	(.090)	(1.090)**	(1.148)	(1.439)
surv-age	.00002	.0003	.0008	00006	.0005	.0003	.0003
	(.00008)	(.0003)	(.0004)*	(.00004)	(.0003)	(.0004)	(.0005)
non-ka	18.657	17.431	40.826	19.467	-35.226	-48.785	59.370
	(20.913)	(40.412)	(56.420)	(21.948)	(86.500)	(89.859)	(77.985)
non-roa	-207.493	-256.104	25.101	-92.923	1277.346	2007.776	-239.860
	(101.051)**	(336.519)	(147.754)	(98.917)	(1936.245)	(2012.400)	(1571.001)
non-ineff	.063	1.751	.539	.012	6.204	3.371	.403
	(.082)	(1.857)	(.199)***	(.068)	(2.886)**	(3.345)	(.161)**
non-age	0001	0002	0002	-3.74e-06	0004	0003	0002
	(.00005)***	(.00008)***	(.0001)*	(.00004)	(.0002)*	(.0002)	(.0002)


merger x/y: merger number x for institutions with y mergers.

Results2: Current Merger Ratio on Prior Ratio

ratio	3rd merger		2nd merger	merger 2/2	merger 3/3		merger 2/3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
2nd ratio	.329 (.098)***	.289 (.095)***			.318 (.217)	.357 (.222)	
1st ratio		.152 (.131)	.547 (.080)***	.376 (.174)**		.269 (.144)*	.479 (.175)***
surv-ka	-197.858	-187.474	13.447	-29.966	-257.673	-253.378	33.744
	(58.654)***	(57.519)***	(31.431)	(25.917)	(57.983)***	(56.805)***	(143.771)
surv-roa	508.106	408.549	-163.806	-486.930	1005.120	1240.166	3942.209
	(1347.544)	(1368.319)	(261.444)	(303.852)	(1922.747)	(1745.945)	(3283.979)
surv-ineff	017	018	.053	027	013	016	.922
	(.010)*	(.011)*	(.102)	(.040)	(.012)	(.013)	(1.967)
surv-age	.0003	.0002	.0001	9.14e-06	.0001	1.00e-05	.0003
	(.0003)	(.0003)	(.00008)*	(.00005)	(.0004)	(.0003)	(.0004)
non-ka	98.163	106.287	37.788	52.895	181.192	193.902	78.172
	(54.385)*	(55.319)*	(31.218)	(26.664)**	(86.661)**	(80.445)**	(69.566)
non-roa	58.805	39.604	-42.207	13.362	-253.256	-266.862	-934.495
	(116.437)	(118.535)	(127.686)	(135.399)	(129.344)*	(117.510)**	(1381.286)
non-ineff	.525	.525	.253	.870	1.603	1.711	.400
	(.457)	(.462)	(.143)*	(.457)*	(.682)**	(.710)**	(.206)*
non-age	.00007	.00006	0002 (.00007)**	0001 (.00006)*	0002 (.0001)	0003 (.0001)**	0003 (.0002)

merger x/y: merger number x for institutions with y mergers.

Results - Summary

Pai	nel A
first-ratio on second-ratio	first-ratio on third-ratio
$ratio_{1it} = \alpha + \beta_1 E_t ratio_{2it'} + \beta_2 X_{it} + \varepsilon_i$	$ ag{ratio}_{1it} = lpha + eta_1 E_t ratio_{3it''} + eta_2 X_{it} + arepsilon_i$
$\beta_1 = 0.419$	$eta_1=0.293$
	second-ratio on third-ratio
	$ratio_{2it'} = \alpha + \beta_1 E_t ratio_{3it''} + \beta_2 X_{it'} + \varepsilon_i$
	$eta_1=0.418$
Par	nel B
second-ratio on first-ratio	third-ratio on first-ratio
$ratio_{2it'} = \alpha + \beta_1 ratio_{1it} + \beta_2 EX_{it'} + \varepsilon_i$	$ au_{atio_{3it''}} = lpha + eta_1 ratio_{1it} + eta_2 EX_{it''} + arepsilon_i$
$\beta_1 = 0.606$	$\beta_1 = 0.333$
	third-ratio on second-ratio
	$ au_{3it''} = lpha + eta_1 ratio_{2it'} + eta_2 E X_{it''} + arepsilon_i$
	$eta_1=0.357$

Introduction
Background
Model
Applying the Theory
Conclusion

Wrap-Up

 Paper finds existence of search equilibrium in a two-stage matching game

Wrap-Up

- Paper finds existence of search equilibrium in a two-stage matching game
- Agent foresight in these games leads to different matching choices in each stage and different long run patterns

Wrap-Up

- Paper finds existence of search equilibrium in a two-stage matching game
- Agent foresight in these games leads to different matching choices in each stage and different long run patterns
- Found evidence of this in bank merger patterns